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Key players at height 1
Formal group law:

Let Fi,(z,y) be the p-typification of the multiplicative formal group law x + y + xy over
F,. Then the p-series of F}, is
[p)Fa(z) = 2?

Thus, F, is exactly the height 1 Honda formal group law.

Morava E-theory

In general, we have that
In this case,

and
E(Fy, Fn) = Z,

Adjoining an invertible class in degree -2 to make this into an even periodic theory, we
have that the first Morava E-theory F; has coefficients Z,[u*!]. Furthermore, we may
take F' as a universal deformation of itself. Turning it into a degree -2 formal group law,

we have
F(z,y) = u™ " F(uz, uy)

E; is a model for p-complete complex K-theory (it has the same coefficients and the same
formal group law).

Morava stabilizer group:

We are interested in the group of endomorphisms of the multiplicative formal group law,
F'. First, note that it must contain Z: given an integer n € Z, we send it to the n-series
[n]r(x). We may extend this to Z,, since a p-adically convergent sequence of integers
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ni,ne, ... gives a p-adically convergent sequence of power series [n1](x), [n2](x),... (this
requires checking [p"](x) mod zP"*1). It turns out that there are no other endomorphisms,
i.e. End(F) = Z,.

S1, the group of automorphisms of F; is the group of units in the p-adics. The reduction
mod p map
X X
Z, —F,

sits in a short exact sequence
1= 1+pZ, — 7, —TF;

Thinking of F) as the group i, of (p— 1)st roots of unity over I, we may use Hensel’s
Lemma to construct a splitting p, 1 — Z; so that

; = pip1 X (1 + pZy)

For odd primes, the above is topologically cyclic, generated by any element g = (¢, @)
such that ¢ is a primitive (p — 1)st root of unity and o ¢ 1 + p*Z,. For p = 2, we have

Zy 2 {£1} x (14 4Z,)
and while ZJ is not topologically cyclic, 1 + 4Z, is.

S1 acts on the homology theory F; as follows. Given an automorphism g(x) of the
multiplicative formal group law over F,, we lift the coefficients to Z, and adjust for the
grading to get g(z) = v 'g(ux). The induced map ¢ : Z, = E(F,, F) — E(F,, F) = Z,
must be the identity, and so ¢*F = F. We extend ¢ to Z,[u™'] by defining

Y(u™h) =g/ (0u

This is the action of S; on the coefficients of E;. When ¢(z) = [n]p(z) = (1 4+ 2)" — 1,
then g(z) = v ((1 +ux)" — 1), ¢'(0) = n, and

Y(u) = nu

The action on the homology theory E is given by applying Landweber exactness. v :
Zy|utt] — Zy[u*'] is a map of MU,-modules and so we have an automorphism of E; =
Zp[u*] @pu, MUL(—).

Defining the image of J

Let H(n) denote the monoid of homotopy self-equivalences of S™ that preserve the base-
point. It sits inside 2"S™ as the union of two components. There is an obvious map
O(n) — H(n) (There is also a map from U(n) to H(2n) which factors through O(2n)).
The composition

O(n) — H(n) — Q"S"
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induces

m(0(n)) = m(Q"S") = mpS”

and we can check that these maps commute with the maps O(n) — O(n + 1) and
H(n) — H(n + 1) to yield a map of colimits

$:0 = H—Q°E>s0
and a map of stable homotopy groups
m0 — !

We call this map the J-homomorphism and denote its image by J(S?).
The map O(n) — H(n) sits in a fiber sequence

O(n) — H(n) = H(n)/O(n) — BO(n) — BH(n)

Notice that BO(n) — BH(n) is the map that classifies the underlying spherical fibration
of the universal bundle over BO(n).

Stable Adams operations

Recall that the Adams operations ¥* : K(X) — K(X) are the unique natural ring
homorphisms such that ¢*(L) = L* whenever L is a line bundle. They are unstable in
the sense that the diagram

S2BU 2 BU

1/\¢kl wl
S2BU —2— BU

does not commute. If we invert k, we can fix this by defining ¢* on the 2nth space of
KU by F = ;f—: It maps to KU[]. Since ¢* acts on the Bott class 8 € m(BU) by
Y*(B) = kB and the map S2KU, — KU, is just multiplication by 8. Our definition of
¢F adjusts for this.

If we complete at a prime p, then ¢F is defined for k coprime to p and from here on we
drop the tilde and refer to these stable Adams operations as 1*. So Z sits inside [K,,, K,).
One can show that [K),, K] is complete, so that the Adams operations extend to Z,.
This actually turns out to be an isomorphism.

Notice that the action of the stable Adams operations on
m. KU, = Z,[6*]

is exactly the action of the Morava stabilizer group on Ej.

The Adams conjecture

Adams Conjecture: If k € N, then for any z € K(X), we have k"(¢*(x) — x) = 0 in
the image of J for some n > 0.

This gives us an upper bound on the image of J.
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The image of J completed at p

If we complete at a prime p, the Adams conjecture implies that the composition of the
map 1 — ¥ with BU, — B#H,, is nullhomotopic whenever k is coprime to p. This induces
a map hofib(1 — ¢*) — H such that the following diagram commutes

Ik
U, — hofib(1 —y*) —— BU, % By,

-| l l |

U, AN H, — H,/U, —— BU,

Thus, we have shown that the Adams conjecture implies that the J homomorphism
factors through the homotopy of the fiber of 1 — ¥*. If p is odd, let ¢ be a generator of
Z). Then in fact hofib(1 — 19) is a split summand of #,. We will come back to this
later. For now, let’s assume

Theorem: The map m,(hofib(1 — ¢9)) — m,BH, = m,S) is the inclusion of a split
summand of WnSg for n > 0.
hOﬁb(l — ¢g) and LK(l)S
The theorem of Devinatz-Hopkins that
LimS° = Ep*

in this case says that
LK(l)SO = KI];Z”X

Proposition: Let g be a topological generator of Z,. Then KZ}JZ”X =hofib(1 — 7).
Proof: Consider the diagram

K} — K, —— =x

l l J

K, Y% ko« K, M K,

Both squares are pullbacks. This implies that the fibers of the horizontal compositions
are equivalent. That is, hofib(1 — ¢9) = K}"”.

It remains to show that K;,‘Z = KZ}JZ”X. To see this we use the homotopy fixed point

spectral sequence. There is a map KQZP — K]’}Z given by inclusion of fixed points. It
induces a map of homotopy fixed point spectral sequences, and

H(Zy), mi(Kp)) = HI(Z, m.(Kp))

is an isomorphism of Fs-terms. This can be seen by computing both of them.



Computing 7, Ly 1)S

Since L (1)S = hofib(1 — 9), we may use the long exact sequence of the fibration
LK(l)S — Kp — Kp

to compute the homotopy of Lk1)S. Recall that g is chosen to be a generator of Z; =

pp—1 X (14 pZ,) so that g = (¢, y) where p divides g — 1 but p? does not.

Firstly, since ¢9 acts on myK, = Z, by the identity, 1 — 49 vanishes on 7y and since
Tok+1K, = 0, we have

WOLK(l)S = Zp

and
7T_1LK(1)S = Zp

On 7o, K, ¥9 acts by ¢g¥. Thus, 1 — 9 is injective for k # 0 and so
WQkLK(l)S =0

and

Ton-1LryS = Zy/(1 — g")
Now, if p — 1 does not divide k, then ¢g* — 1 is a unit mod p and Tok—1LgyS = 0. If
k = (p— 1)m, then g* = (g?~!)™, and gP~' topologically generates 1 + pZ,. If m = p"l
where [ is coprime to p, then (gP~1)™ = ((g?~1)P")™ topologically generates the cyclic
subgroup 1+ p"7Z,
so that 1 — ¢g* generates p"™'Z, topologically. Thus, if k = (p — 1)p"l, then

Tok—1 = Z/pT+1

That is,
Ly, :n=0,—1
TnLlxkyS =4 Z/pZ n+1=2(p—1)p"l1% 0 modp
0 : otherwise

Aside: Bernoulli numbers

The Bernoulli numbers ; are given by the power series of the function z/(e® — 1):
x
et —1

Since %5 — 1+ 7 is an even function, fBy,1 = 0 for ¢ > 0. Also, 8 = —%.

t
o T
= Et:oﬁtﬁ

This definition of Bernoulli numbers will come up in the lower bound of the image of
J. What we will really be interested in are the denominators of % when the fraction is
expressed in lowest terms. Call this m(2s). Adams describes m(2s) by giving its p-adic
evaluation:

Proposition: For p odd, v,(m(t)) =1+ v,(t) if (p — 1) divides ¢ and is zero otherwise.
For p =2, ra(m(t)) = 2 + 1»(t) if t is even and 1 otherwise.

Notice that the order of m, Lk 1)S is exactly l/p("T“), that is, the denominator of 5,412/ (n+

1).



Computing 7. Lgi)S
To compute 7, Lg)S, we use the pullback square

LE(l)S — LK(l)S

l |

which gives a long exact sequence in homotopy
s —> 7Tn+1LE(0)LK(1)S — WnLE(l)S — WnLK(l)S © WnLE(O)S — WnLE(O)LK(l)S — ...

Recall that LpgS ~ HQ ~ SQ (where the right hand side is the rational Eilenberg-
Moore spectrum). There is a universal coefficients theorem for m,SG

0= GmX — m(SGAX)— Tor(G,m1X) — 0
which for G = Q implies that
T L) Lr)S = m(Lp©)S A Lr)S) = Q @ m(Lx1)S)
Thus, m,(Lg©)Lir@)S) = Q, for n =0, —1 and is zero otherwise.

Then for n # 0,1, -2 we have m,Lg1)S = m,Lk1)S. For the remaining groups, we
have the exact sequence

0— 7TOLE(1)S — Zp D @ — @p — 7T_1LE(1)S — Zp — @p — 7T_2LE(1)S — 0

It follows that

7 n=0

Q/Z, :n=-2

Z/p™Z :n+1=2(p—1)p"l1#0modp
0 : otherwise

WnLE(l)S =

Adams’ lower bound on the image of J
The e-invariant

Adams computed a lower bound on the image of J and showed that it is the same as the
upper bound. The computation consists of defining a homomorphism

e:mp — Q/Z
such that the composition
J
Tok-1U(n) —— Mopyor_15*" —— Q/Z

when evaluated on a generator of mo,_1U(n) has denominator m(k).



Given a map ¢ : S*™~ 1 — S let C, denote the cofiber. Then we have a short exact
sequence in K-theory

0— K(S™™) = K(C;) — K(5*) =0
Applying the Chern character, we have a homomorphism of short exact sequences

0 — K™ —— K(C) —— KIS ——0

l l |

0 —— H*(S$*™ Q) —— H*(CpQ) —— H*(S*™ Q) —— 0

Let «, 8 denote elements of K (Cy) mapping from and to generators of K(S*") and
K (52™), respectively. Similarly, let a,b € H *(Cy; Q) be elements mapping from and to
generators of H*™(S?™:Z) and H*"(S*";Z), respectively. We may assume ch(a) = a and
ch(B) = b+ra for some r € Q.  and b are not uniquely determined, but if we vary them
by integer multiples of o and a, we change r by an integers. So r is well-defined in Q/Z.
We define e(g) = r. One can check that it is a homomorphism.

Bounding the image of J below
The key to evaluating e(.J f) is the following lemma.

Lemma: Cj; is the Thom space of the bundle E; — S determined by the clutching
function f : S?*7! — U(n).Under this identification, 8 € K(Cjs) corresponds to the
Thom class of Fy.

K(T(Ey)) is a free one-dimensional module over K(S?*). It can be identified with a
submodule of K(P(Ey)) generated by a specific relation corresponding to the Thom
class. One may then apply the splitting principle and compute the value of the Chern
character.

Theorem: (Atiyah?) Let E be any n-dimensional complex vector bundle with base B.
Let U denote the Thom class in H*(T(E); Q) which corresponds to 1 € H*(B; Q) under
the Thom isomorphism ® : H*(B; Q) — H*(T(E); Q). Let bhy denote the image of the
characteristic class in H*(BU(n); Q) whose image in H*(BU(1)";Q) is
er —1
M

1<r<n

Then
q)*lch(U) = bhg

After some manipulation of power series, this implies

e(Jf) = ar = Br/k



The a-family

Theorem: Let p be an odd prime, m = p/, and » = (p — 1)p/. Then there exists
a € 75, such that

(i) ma =0
(ii) e(a) = —=%, and

(iii) The Toda bracket {m, «, m} is zero mod mms3,.

For q large, we have
- S2q+2r72 N Squl

and the Toda bracket gives a map
52q+2r71 SN S2q71

Let Y denote the cofiber of m : §%~1 — S2¢=1 Then since m{m, a,m} = 0, the
Toda bracket induces a map on the cofiber of m

A: XY Y

and we have a diagram
I LN

| /]

SQq—i—’r—l @ s SQq
Adams defines the d invariant of a map f : X — Y as f* € Hom(K*(Y), K*(X)).
The e invariant may be viewed as an element of a certain Ext group, and Adams

shows that
d(jA) = —me(a)
which in this case implies
d(jA) =1

Thus, A must be an isomorphism in K-theory.

Now, since A is induces an isomorphism in K-theory, so does any composite
AoY"AoX¥ Ao o XD A 0¥y Y
We may now construct a map a; via the following diagram.
¥’y —— Y
zT Ji
G2a+2rs—1 %, g2

An argument like the one above shows that

ela) = ——

which shows that «, is essential.



