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Key players at height 1

Formal group law:

Let Fm(x, y) be the p-typification of the multiplicative formal group law x+ y + xy over
Fp. Then the p-series of Fm is

[p]Fm(x) = xp

Thus, Fm is exactly the height 1 Honda formal group law.

Morava E-theory

In general, we have that
E(k,Γ) = Wk[[u1, . . . , un−1]]

In this case,
WFp = Zp

and
E(Fp, Fm) = Zp

Adjoining an invertible class in degree -2 to make this into an even periodic theory, we
have that the first Morava E-theory E1 has coefficients Zp[u±1]. Furthermore, we may
take F as a universal deformation of itself. Turning it into a degree -2 formal group law,
we have

F (x, y) = u−1F (ux, uy)

E1 is a model for p-complete complex K-theory (it has the same coefficients and the same
formal group law).

Morava stabilizer group:

We are interested in the group of endomorphisms of the multiplicative formal group law,
F . First, note that it must contain Z: given an integer n ∈ Z, we send it to the n-series
[n]F (x). We may extend this to Zp, since a p-adically convergent sequence of integers
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n1, n2, . . . gives a p-adically convergent sequence of power series [n1](x), [n2](x), . . . (this
requires checking [pr](x) mod xpr+1). It turns out that there are no other endomorphisms,
i.e. End(F ) ∼= Zp.

S1, the group of automorphisms of F , is the group of units in the p-adics. The reduction
mod p map

Z×p → F×p
sits in a short exact sequence

1→ 1 + pZp → Z×p → F×p

Thinking of F×p as the group µp−1 of (p− 1)st roots of unity over Fp, we may use Hensel’s
Lemma to construct a splitting µp−1 → Z×p so that

Z×p ∼= µp−1 × (1 + pZp)

For odd primes, the above is topologically cyclic, generated by any element g = (ζ, α)
such that ζ is a primitive (p− 1)st root of unity and α /∈ 1 + p2Zp. For p = 2, we have

Z×2 ∼= {±1} × (1 + 4Z2)

and while Z×2 is not topologically cyclic, 1 + 4Z2 is.

S1 acts on the homology theory E1 as follows. Given an automorphism g(x) of the
multiplicative formal group law over Fp, we lift the coefficients to Zp and adjust for the
grading to get g̃(x) = u−1g(ux). The induced map ψ : Zp = E(Fp, F ) → E(Fp, F ) = Zp
must be the identity, and so ψ∗F = F . We extend ψ to Zp[u±1] by defining

ψ(u−1) = g′(0)u−1

This is the action of S1 on the coefficients of E1. When g(x) = [n]F (x) = (1 + x)n − 1,
then g̃(x) = u−1((1 + ux)n − 1), g′(0) = n, and

ψ(u) = nu

The action on the homology theory E1 is given by applying Landweber exactness. ψ :
Zp[u±1] → Zp[u±1] is a map of MU∗-modules and so we have an automorphism of E1 =
Zp[u±1]⊗MU∗ MU∗(−).

Defining the image of J

Let H(n) denote the monoid of homotopy self-equivalences of Sn that preserve the base-
point. It sits inside ΩnSn as the union of two components. There is an obvious map
O(n) → H(n) (There is also a map from U(n) to H(2n) which factors through O(2n)).
The composition

O(n)→ H(n)→ ΩnSn
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induces
πi(O(n))→ πi(Ω

nSn) = πn+iS
n

and we can check that these maps commute with the maps O(n) → O(n + 1) and
H(n)→ H(n+ 1) to yield a map of colimits

φ : O → H→ Ω∞Σ∞S0

and a map of stable homotopy groups

πiO → πsi

We call this map the J-homomorphism and denote its image by J(Si).
The map O(n)→ H(n) sits in a fiber sequence

O(n)→ H(n)→ H(n)/O(n)→ BO(n)→ BH(n)

Notice that BO(n)→ BH(n) is the map that classifies the underlying spherical fibration
of the universal bundle over BO(n).

Stable Adams operations

Recall that the Adams operations ψk : K(X) → K(X) are the unique natural ring
homorphisms such that ψk(L) = Lk whenever L is a line bundle. They are unstable in
the sense that the diagram

Σ2BU
B−−−→ BU

1∧ψk

y ψk

y
Σ2BU

B−−−→ BU

does not commute. If we invert k, we can fix this by defining ψ̃k on the 2nth space of

KU by ψ̃k = ψk

kn
. It maps to KU [ 1

k
]. Since ψk acts on the Bott class β ∈ π2(BU) by

ψk(β) = kβ and the map Σ2KU0 → KU2 is just multiplication by β. Our definition of
ψ̃k adjusts for this.
If we complete at a prime p, then ψ̃k is defined for k coprime to p and from here on we
drop the tilde and refer to these stable Adams operations as ψk. So Z sits inside [Kp, Kp].
One can show that [Kp, Kp] is complete, so that the Adams operations extend to Zp.
This actually turns out to be an isomorphism.

Notice that the action of the stable Adams operations on

π∗KUp = Zp[β±1]

is exactly the action of the Morava stabilizer group on E1.

The Adams conjecture

Adams Conjecture: If k ∈ N, then for any x ∈ K(X), we have kn(ψk(x) − x) = 0 in
the image of J for some n� 0.

This gives us an upper bound on the image of J .
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The image of J completed at p

If we complete at a prime p, the Adams conjecture implies that the composition of the
map 1−ψk with BUp → BHp is nullhomotopic whenever k is coprime to p. This induces
a map hofib(1− ψk)→ H such that the following diagram commutes

Up −−−→ hofib(1− ψk) −−−→ BUp
(1−ψk)−−−−→ BUp

=

y y y =

y
Up

J−−−→ Hp −−−→ Hp/Up −−−→ BUp

Thus, we have shown that the Adams conjecture implies that the J homomorphism
factors through the homotopy of the fiber of 1 − ψk. If p is odd, let g be a generator of
Z×p . Then in fact hofib(1 − ψg) is a split summand of Hp. We will come back to this
later. For now, let’s assume

Theorem: The map πn(hofib(1 − ψg)) → πnBHp = πnS
0
p is the inclusion of a split

summand of πnS
0
p for n ≥ 0.

hofib(1− ψg) and LK(1)S

The theorem of Devinatz-Hopkins that

LK(n)S
0 = EhSn

n

in this case says that
LK(1)S

0 = KhZp×
p

Proposition: Let g be a topological generator of Zp. Then K
hZp×
p =hofib(1− ψg).

Proof: Consider the diagram

KZ
p −−−→ Kp −−−→ ∗y y y

Kp
(1,−ψg)−−−−→ Kp ×Kp

diff−−−→ Kp

Both squares are pullbacks. This implies that the fibers of the horizontal compositions
are equivalent. That is, hofib(1− ψg) = KhZ

p .

It remains to show that KhZ
p = K

hZp×
p . To see this we use the homotopy fixed point

spectral sequence. There is a map K
hZp
p → KhZ

p given by inclusion of fixed points. It
induces a map of homotopy fixed point spectral sequences, and

H∗c (Z×p , π∗(Kp))→ H∗c (Z, π∗(Kp))

is an isomorphism of E2-terms. This can be seen by computing both of them.
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Computing π∗LK(1)S

Since LK(1)S = hofib(1− ψg), we may use the long exact sequence of the fibration

LK(1)S → Kp → Kp

to compute the homotopy of LK(1)S. Recall that g is chosen to be a generator of Z×p =
µp−1 × (1 + pZp) so that g = (ζ, y) where p divides g − 1 but p2 does not.
Firstly, since ψg acts on π0Kp = Zp by the identity, 1 − ψg vanishes on π0 and since
π2k+1Kp = 0, we have

π0LK(1)S ∼= Zp
and

π−1LK(1)S ∼= Zp
On π2kKp, ψ

g acts by gk. Thus, 1− ψg is injective for k 6= 0 and so

π2kLK(1)S = 0

and
π2k−1LK(1)S ∼= Zp/(1− gk)

Now, if p − 1 does not divide k, then gk − 1 is a unit mod p and π2k−1LK(1)S = 0. If
k = (p − 1)m, then gk = (gp−1)m, and gp−1 topologically generates 1 + pZp. If m = prl
where l is coprime to p, then (gp−1)m = ((gp−1)p

r
)m topologically generates the cyclic

subgroup 1 + pr+1Zp
so that 1− gk generates pr+1Zp topologically. Thus, if k = (p− 1)prl, then

π2k−1 = Z/pr+1

That is,

πnLK(1)S =


Zp : n = 0,−1
Z/pr+1Z : n+ 1 = 2(p− 1)prl l 6≡ 0 mod p
0 : otherwise

Aside: Bernoulli numbers

The Bernoulli numbers βt are given by the power series of the function x/(ex − 1):

x

ex − 1
= Σ∞t=0βt

xt

t!

Since x
ex−1
− 1 + x

2
is an even function, β2t+1 = 0 for t > 0. Also, β1 = −1

2
.

This definition of Bernoulli numbers will come up in the lower bound of the image of
J . What we will really be interested in are the denominators of β2s

4s
when the fraction is

expressed in lowest terms. Call this m(2s). Adams describes m(2s) by giving its p-adic
evaluation:

Proposition: For p odd, νp(m(t)) = 1 + νp(t) if (p− 1) divides t and is zero otherwise.
For p = 2, ν2(m(t)) = 2 + ν2(t) if t is even and 1 otherwise.

Notice that the order of πnLK(1)S is exactly νp(
n+1

2
), that is, the denominator of β(n+1)/2/(n+

1).
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Computing π∗LE(1)S

To compute π∗LE(1)S, we use the pullback square

LE(1)S −−−→ LK(1)Sy y
LE(0)S −−−→ LE(0)LK(1)S

which gives a long exact sequence in homotopy

· · · → πn+1LE(0)LK(1)S → πnLE(1)S → πnLK(1)S ⊕ πnLE(0)S → πnLE(0)LK(1)S → . . .

Recall that LE(0)S ' HQ ' SQ (where the right hand side is the rational Eilenberg-
Moore spectrum). There is a universal coefficients theorem for π∗SG

0→ G⊗ π∗X → π∗(SG ∧X)→ Tor(G, π∗−1X)→ 0

which for G = Q implies that

π∗LE(0)LK(1)S ∼= π∗(LE(0)S ∧ LK(1)S) ∼= Q⊗ π∗(LK(1)S)

Thus, πn(LE(0)LK(1)S) ∼= Qp for n = 0,−1 and is zero otherwise.

Then for n 6= 0,−1,−2 we have πnLE(1)S ∼= πnLK(1)S. For the remaining groups, we
have the exact sequence

0→ π0LE(1)S → Zp ⊕Q→ Qp → π−1LE(1)S → Zp → Qp → π−2LE(1)S → 0

It follows that

πnLE(1)S =


Z : n = 0
Qp/Zp : n = −2
Z/pr+1Z : n+ 1 = 2(p− 1)prl l 6≡ 0 mod p
0 : otherwise

Adams’ lower bound on the image of J

The e-invariant

Adams computed a lower bound on the image of J and showed that it is the same as the
upper bound. The computation consists of defining a homomorphism

e : πsk → Q/Z

such that the composition

π2k−1U(n)
J−−−→ π2n+2k−1S

2n e−−−→ Q/Z

when evaluated on a generator of π2k−1U(n) has denominator m(k).
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Given a map g : S2m−1 → S2n, let Cg denote the cofiber. Then we have a short exact
sequence in K-theory

0→ K̃(S2m)→ K̃(Cf )→ K̃(S2n)→ 0

Applying the Chern character, we have a homomorphism of short exact sequences

0 −−−→ K̃(S2m) −−−→ K̃(Cg) −−−→ K̃(S2n) −−−→ 0y y y
0 −−−→ H̃∗(S2m;Q) −−−→ H̃∗(Cg;Q) −−−→ H̃∗(S2n;Q) −−−→ 0

Let α, β denote elements of K̃(Cg) mapping from and to generators of K̃(S2m) and
K̃(S2n), respectively. Similarly, let a, b ∈ H̃∗(Cg;Q) be elements mapping from and to
generators of H2m(S2m;Z) and H2n(S2n;Z), respectively. We may assume ch(α) = a and
ch(β) = b+ ra for some r ∈ Q. β and b are not uniquely determined, but if we vary them
by integer multiples of α and a, we change r by an integers. So r is well-defined in Q/Z.
We define e(g) = r. One can check that it is a homomorphism.

Bounding the image of J below

The key to evaluating e(Jf) is the following lemma.

Lemma: CJf is the Thom space of the bundle Ef → S2k determined by the clutching
function f : S2k−1 → U(n).Under this identification, β ∈ K̃(CJf ) corresponds to the
Thom class of Ef .

K(T (Ef )) is a free one-dimensional module over K(S2k). It can be identified with a
submodule of K(P (Ef )) generated by a specific relation corresponding to the Thom
class. One may then apply the splitting principle and compute the value of the Chern
character.

Theorem: (Atiyah?) Let E be any n-dimensional complex vector bundle with base B.
Let U denote the Thom class in H̃∗(T (E);Q) which corresponds to 1 ∈ H∗(B;Q) under
the Thom isomorphism Φ : H∗(B;Q) → H̃∗(T (E);Q). Let bhE denote the image of the
characteristic class in H∗(BU(n);Q) whose image in H∗(BU(1)n;Q) is∏

1≤r≤n

exr − 1

xr

Then
Φ−1ch(U) = bhE

After some manipulation of power series, this implies

e(Jf) = αk = βk/k
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The α-family

Theorem: Let p be an odd prime, m = pf , and r = (p − 1)pf . Then there exists
α ∈ πs2r−1 such that

(i) mα = 0

(ii) e(α) = − 1
m

, and

(iii) The Toda bracket {m,α,m} is zero mod mπs2r.

For q large, we have
α : S2q+2r−2 → S2q−1

and the Toda bracket gives a map

S2q+2r−1 → S2q−1

Let Y denote the cofiber of m : S2q−1 → S2q−1. Then since m{m,α,m} = 0, the
Toda bracket induces a map on the cofiber of m

A : Σ2rY → Y

and we have a diagram

Σ2rY
A−−−→ Y

i

y j

x
S2q+r−1 α−−−→ S2q

Adams defines the d invariant of a map f : X → Y as f ∗ ∈ Hom(K∗(Y ), K∗(X)).
The e invariant may be viewed as an element of a certain Ext group, and Adams
shows that

d(jA) = −me(α)

which in this case implies
d(jA) = 1

Thus, A must be an isomorphism in K-theory.

Now, since A is induces an isomorphism in K-theory, so does any composite

A ◦ Σ2rA ◦ Σ4rA ◦ · · · ◦ Σ2r(s−1)A : Σ2rsY → Y

We may now construct a map αs via the following diagram.

Σ2rsY −−−→ Y

i

x j

y
S2q+2rs−1 αs−−−→ S2q

An argument like the one above shows that

e(αs) = − 1

m

which shows that αs is essential.
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